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Abstract

Theoretical calculations of radiation attenuation due to energetic galactic
cosmic rays behind Martian rock and Martian regolith material have been made
to compare their utilization as shields for advanced manned missions to Mars
because the detailed chemical signature of Mars is distinctly different from Earth.
The modified radiation fields behind the Martian rocks and the soil model were
generated by solving the Boltzmann equation using a HZETRN system with the
1977 Solar Minimum environmental model. For the comparison of the attenuation
characteristics, dose and dose equivalent are calculated for the five different sub-
groups of Martian rocks and the Martian regolith. The results indicate that
changes in composition of subgroups of Martian rocks have negligible effects on
the overall shielding properties because of the similarity of their constituents. The
differences for dose and dose equivalent of these materials relative to those of
Martian regolith are within 0.5 and 1 percent, respectively. Therefore, the analy-
sis of Martian habitat construction options using in situ materials according to
the Martian regolith model composition is reasonably accurate. Adding an epoxy
to Martian regolith, which changes the major constituents of the material,
enhances shielding properties because of the added hydrogenous constituents.

Introduction behind various materials is calculated for the complex
radiation environmental components as a function of
The primary galactic cosmic rays (GCR) consist Shield composition and thickness to compare the
mostly of protons and alpha particles with a small but Shield effectiveness of these materials. The radiation
significant component of heavier particles. Figure 1 attenuation characteristics behind each material are
illustrates the spectra at 1 astronomical unit (AU) for @ssessed in terms of conventional dosimetry by using
primary GCR ions up to nickel by using the 1977 solar quality factors (ref. 6). The dose and dose equivalent
minimum GCR environmental model (ref. 1), which are compared for different Martian meteorites as can-
represents a maximum in intensity of the GCR. didate habitats from space radiation in deep space mis-
Humans on a manned mission to Mars will require Sions for human protection. To see the accuracy of the
more protection from the GCR than has been usedPrevious analysis of Martian habitat, these results are
heretofore on shorter missions (ref. 2). compared with that from Martian regolith model com-
position, in which only 5 of the more abundant ele-
For habitats on the surface of Mars, the regolith of Ments occurring in samples were chosen although up
a particular locale is a convenient candidate for bulkto 11 constituent atoms are in each meteorite. Shield-
shielding without excessive launch weight require- ing ability of materials with varying composition and
ments from Earth. The Martian regolith model compo- constituents is analyzed by comparing dose and dose
sition, which is based on Viking lander data (ref. 3), equivalent behind various materials with various
has been used in the Martian regolith shielding studieghicknesses.
(ref. 4). Over the years, Martian meteorites have been

found, and vast literature exists about them. TheseChemica| Analyses of Martian

meteorites are investigated for the radiation attenua- . . .
tion characteristics and their shielding ability. The Meteorites, Martian RegO“th’ and

compositions of the meteorites are obtained from theCOMpPOSIites
Mars Meteorite Compendium—2199¢ompiled by
Meyer (ref. 5). Martian meteorites are considered as random soil
samples from Mars for space construction. Chemical
Although the detailed effect of the Martian atmo- analyses of 11 Martian meteorites are found from the
spheric shield is not a concern in this study, the trans-Mars Meteorite Compendiurfref. 5). These igneous
mitted GCR environment at the 1977 solar minimum rocks are grouped into five subgroups according to



their own distinct chemical signatures. The first group fragmentations). Although nuclear reactions are far
of Basalt includes some Martian meteorites such adess numerous, their effects are magnified because of
QUE94201, Shergotty, Zagami, and EETA79001. the large momentum transferred to the nuclear parti-
Martian  meteorites named LEWS88516 and cles and the impacted nucleus itself. Many secondary
ALHA77005 are in the second group called particles of nuclear reactions are sufficiently energetic
Lherzolite; Martian meteorites named Governador to promote similar nuclear reactions and thus cause a
Valadares, Nahkla, and Lafayette are in the nextbuildup of secondary radiation.

group called Clinopyroxenite; ALH84001 is in the

Orthopyroxenite group; and Chassigny is in the Dunite . . . .

group. These groupings are apparent in the patterns of The propag_atlon and |nt_eract|or_1$ of hlgh-_energy
chemical analyses of the five most abundant chemical®"S UP to atomlc number 28 n Martian meteor_ltes and
components of each meteorite as shown in figure Z.Martlan regolith model are smula‘;ed by using the
The average weight percentage of chemical analyse%ranSport code HZETRN (ref. 9). This cpde solves the
of these groups also shows their own distinct variation undame_ntal Boltzmann trar\spo_rt equation and ap_phes
of compositions in figure 3. Therefore, the attenuation the straight-ahead approximation for nucleon, light

characteristics are examined by using the averagdonS: @nd high-charge, high-energy (HZE) nuclei with
compositions within these groups. Average atomic

velocity-conserving fragmentation interactions for
constituents of each group are given in table 1 asHZE nuclei colliding with shield materials. The inter-
atomic parameters for the transport code.

actions of HZE nuclei have been carefully investigated
because of their unusually high specific ionization and
their enormous energy range (ref. 9). The nuclear reac-
tions of light ions (proton, neutroAt, 3H, He, and

“He) have been added into this code because they are
f\bundant in primary GCR and build up with increas-
ng shield thickness due to longer ranges and greater
multiplicities in inelastic events (ref. 10).

In assessing the radiation protection for future
manned exploration and habitation of Mars, the
Martian regolith model composition (ref. 3) has
been used. (See ref. 4.) A representative sampling o
Martian regolith (ref. 3) was reported to have a density
of 1.4 g/cn? and to contain almost exclusively only
five elements: O (62.5 mol-percent), Si (21.77), Fe
(6.73), Mg (6.06), and Ca (2.92). The representative  The level of biological injury from the transmitted
atomic parameters are given in table 2. GCR environment behind a material is assessed in

terms of conventional dosimetry, which is a measure

Because hydrogen-containing compounds areOf the response of living tissue behind a shield. The
efficient as potential space structural componentsconventional method of extrapolating the human radi-
(refs. 7 and 8), an epoxy, ICI Fiberite 934, which is an ation risk database to high LET exposures is intro-
aerospace-qualified resin, is considered as a possibléuced by the dose equivalehgiven by the following
binder for the Martian regolith. The potential benefits equation:
of introducing epoxy into Martian regolith are com-
pared by varying weight fraction of epoxy from 10,

20, and 30 percent. Their atomic parameters are given
in table 3.

H = QD )

whereQ is the LET-dependent quality factor defined
GCR Transport and Conventional Risk t)_y ICF_QP (rgf. 6) to re_present trends o_f measured rela-

ive biological effectiveness (RBE) in cell culture,
Assessment plant, and animal experiments aBdis the absorbed

dose due to energy deposition at a given location by all

The primary mechanism for loss of energy by particles. Although the absolute human risk is not

energetic particles is by means of coulombic interac-known because of biological uncertainty, the dose
tions with electrons in the target, such as atomic andequivalent is a measure of the response of living tissue
molecular stopping cross sections (ionization). Addi- behind a material. The dose and dose equivalent as a
tional energy is lost through coulombic interactions function of slab thickness represent the radiation risk
and collisions with target nuclei (projectile and target behind the material in tables 4 and 5.



Comparison of Dose and Dose In addition to the increased radiation safety factor,

Equivalent From Galactic Cosmic Rays incorporating the epoxy into unconsolidated Martian
regolith for manufacturing of structural blocks assures

) _ . many other advantages. It provides more durable
For the comparison of the shield effectiveness of gy crures with significantly less material and more

the materials, the free-space fluences are used withoWesaility in design and utility of structures. Further-
modification of the spectra by the carbon d'ox'd_e_more, there may be a great advantage in the use of
atmosphere of Mars. The absorbed dose at solar miniynconsolidated Martian regolith in construction com-
mum from an annual GCR exposure behind Martian hareq with the use of rocks. For manufacturing struc-
rocks and Martian regolith model is in table 4, and the yr4) piocks, the distribution of fragment size affects
dose equivalent with radiation qua!lty factor is in e making of a good consolidated void-free compos-
table 5. The dose and the dose equivalent among thge Rocks need to be processed first into fragments,
five subgroups are changed within 1 and 2 percent,yhereas Martian regolith is merely gathered. The dif-
respectively. This illustrates that changes in cOmpoSi-ferent rock fragmentation methods require a different
tion of these subgroups with similarity of constituents 5 mount of energy to fragment a unit volume of rock
@n table 1 h:_:lve negligible effects on the overall shield- o specific energy. To make smaller fragment sizes to
ing propertlgs. These values of 'f|ve subgroups areminimize voids requires higher specific energy
compared with those of the Martian regolith model, (ef 12). Using hard rocks requires high energy and
which is comprised of only five representative constit- royides no advantage in shielding effectiveness. The
ue_nts in table 2. Dosegand dose eq_wyalent for thepyenefits of an epoxy-regolith composite must be
thicknesses up to 50 g/émary only within 0.5 and  raged in the context of a complete design reference
1 percent, respectively. These small differences in theyission scenario which takes into account total mass

shielding capability of the materials at moderate to ¢ shielding, additives, processing equipment, EVA

large depths indicate that the relative differences of the(extra vehicular activity) time, and other things rela-
compounds are comparable with these results when e g crew exposure risks (réf_ 13).

the attenuation of the Martian atmosphere is present.

Therefore, the Martian regolith model adequately rep- ]

resents Martian in situ material, and previous analysesConcluding Remarks

for Martian habitats (ref. 4) are assumed reasonably

accurate. A theoretical investigation of the interaction and
alteration of space radiations by various Martian mete-

The effects of changing constituents of a candidateorites shows that Martian meteorite subgroups having
material, such as Martian regolith, by introducing Up to 11 constituents have negligible effects on the
hydrogen-containing epoxy are examined by varying overall shielding properties. These subgroups are com-
its weight fractions. These are shown in figures 4 pared to the Martian regolith model, which has only
and 5 for the thicknesses up to 50 g?cmdding an five representative constituents. The radiation attenua-
epoxy to Martian regolith to bind it into a composite tion characteristics in terms of dosimetry among these
enhances its shielding properties for GCR; the thickermaterials vary only about 0.5 percent for dose and
the shield, the better is its shielding characteristics. Forabout 1 percent for dose equivalent for the thicknesses
a composite of Martian regolith with 30-percent epoxy Up to 50 gl/crA. This result illustrates that the Martian
by weight, dose and dose equivalent at 50 &/are regolith model adequately represents Martian in situ
decreased by 4 and 13 percent relative to those fofmaterial. The use of rocks to build structural compo-
Martian regolith. These results illustrate that changing nents requires large energy inputs and is not viable.
constituents with lighter atoms is much more effective
than changing composition alone for developing The effects of hydrogen-containing composites of
shield materials against GCR. A material with a high epoxy/Martian regolith as potential Martian habitat are
density of hydrogen, which is a composite of Martian examined. Adding 30 percent epoxy by weight to
regolith with 30 percent epoxy by weight, provides the Martian regolith enhances shielding properties in
most effective shielding at all thicknesses because ofwhich dose and dose equivalent are decreased by 4
its greater efficiency in attenuating the heavier ions and 13 percent at 50 g/émespectively. The compos-
that are most destructive to living tissue (ref. 11). ite that has the highest density of hydrogen among
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Table 1. Atomic Parameters for Each Group of Martian Meteorites

=)

Atomic Atomic Atomic density, atoms/g, for—
Element . - - . - -
numberZ | weight,A Basalt Lherzolite | Clinopyroxenite ~ Orthopyroxenite Dunite
o} 8 16 1.60x 10?2 | 1.58x 1072 1.54x 1072 1.65x 1072 1.51x 10?2
Na 11 23 2.35% 100 | 9.15x 10'° 1.13x 1070 2.66x 10t° 2.51x 10t°
Mg 12 24 1.61x 107 | 4.07x 10?2 1.79x 1071 3.77x 1071 4.81x 1071
Al 13 27 8.50x 107° | 3.34x 1070 1.94x 1070 1.45x 1070 8.23x 10t°
Si 14 28 5.01x 1071 | 4.50x 1021 4.88x 1071 5.38x 1021 3.87x 10?1
P 15 31 5.60< 1012 | 2.00x 10'° 3.76x 1018 0.00x 10% 6.41x 1018
K 19 39 1.23x 10*° | 3.31x 108 2.93x 109 1.95x 1018 5.31x 10'8
Ca 20 40 1.06 10?1 | 4.04x 1070 1.56x 1071 1.98x 1070 6.52x 1019
Ti 22 48 8.21x 1019 | 3.28x 101° 2.59x 109 1.53x 1019 7.60x 10'8
Mn 25 55 4.42¢< 10'° | 3.91x10%° 5.69x 1019 4.04x 10'° 4.51x 10'°
Fe 26 56 1.5& 1071 | 1.67x 104 1.79x 1071 1.46x 1071 2.29x 1071
Table 2. Atomic Parameters of Representative Martian Regolith
Element Atomic numbeg Atomic weight,A Atomic density, atoms/g
o) 8 16 1.67x 1072
Mg 12 24 1.62x< 1071
Si 14 28 5.83 1071
Ca 20 40 7.8% 1079
Fe 26 56 1.8 10°1
Table 3. Atomic Parameters of Various Weight Fraction of Epoxy/Martian Regolith Composites
) ) Atomic density, atoms/g, for—
El t Atomic Atomic - . -
emen numberZ weight, A 10% epoxy/90% regolith20% epoxy/80% regolith30% epoxy/70% regolit
with Density = 1.39 with Density = 1.38 with Density = 1.37
H 1 1 3.77x 1071 7.55x 1071 1.13x 1072
C 6 12 3.33x 1071 6.65x 1071 9.98x 1071
N 7 14 3.60x 1079 7.19x 1020 1.08x 1071
o 8 16 1.56x 1072 1.45x 1072 1.33x 1072
Mg 12 24 1.46x 1071 1.30x 1071 1.14x 1071
Si 14 28 5.25¢ 1071 4.66x 1071 4.08x 1071
S 16 32 8.9% 1019 1.80x 1020 2.70x 1070
Ca 20 40 7.0% 1079 6.25x 1070 5.47x 1070
Fe 26 56 1.6 1021 1.44x 1071 1.26x 1071




Table 4. Annual Dose Behind Martian Rock Groups and Martian Regolith

Annual absorbed dose, cGy/yr, behind—

Thé?'éggss’ Basalt Lherzolite Clinopyroxenite Orthopyroxenite Dunite 'r\geglrctllir?
0 19.44 19.44 19.44 19.44 19.44 19.44
0.5 21.56 21.55 21.58 21.54 21.58 21.56
1 21.95 21.93 21.97 21.91 21.96 21.94
3 22.30 22.27 22.33 22.24 22.32 22.29
5 22.28 22.25 22.31 22.21 22.31 22.27
10 21.97 21.94 22.02 21.89 22.01 21.96
20 21.29 21.25 21.33 21.19 21.34 21.27
30 20.65 20.62 20.70 20.56 20.71 20.64
50 19.48 19.44 19.53 19.39 19.54 19.47
Table 5. Annual Dose Equivalent Behind Martian Rock Groups and Martian Regolith
Annual dose equivalent, cSv/yr, behind—
Thgl;/:é(rl:sss, Basalt Lherzolite Clinopyroxenite Orthopyroxenite Dunite 'r\ggglﬁﬂ
0 120.13 120.13 120.13 120.13 120.13 120.13
0.5 134.46 134.44 134.47 134.37 134.55 134.45
1 132.31 132.26 132.38 132.15 132.44 132.30
3 121.17 121.07 121.36 120.83 121.40 121.15
5 111.51 111.37 111.78 111.06 111.79 111.48
10 93.96 93.75 94.33 93.35 94.29 93.91
20 74.54 74.28 74.95 73.84 74.88 74.48
30 64.84 64.58 65.24 64.17 65.16 64.80
50 56.48 56.23 56.80 55.89 56.76 56.47
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Figure 1. Primary galactic cosmic ray spectra for 1977 solar minimum.



Chemical analyses, weight percent
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Figure 2. Chemical analyses of five most abundant chemical components of Martian meteorites.



Chemical analyses, weight percent
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Figure 3. Average weight percent of chemical analyses of Martian meteorite groups.
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